
www.manaraa.com

Comprehensive Speci�cation of DistributedSystems Using I5 and IOAM. Cecilia BastarricaDCC, Universidad de ChileAv. Blanco Encalada 2120Santiago, Chilececilia@dcc.uchile.clphone:(562)678-4362 Steven A. DemurjianCS&E, Univ. of Connecticut191 Auditorium Rd., U-155Storrs, CT 06269, USAsteve@cse.uconn.eduphone:(860)486-4818 Alex A. ShvartsmanCS&E, Univ. of Connecticut191 Auditorium Rd., U-155Storrs, CT 06269, USAaas@cse.uconn.eduphone:(860)486-2672&LCS, MIT545 Tech. Sq., Bldg. NE43Cambridge, MA 02139, USAAbstractLow level di�culties in the development of dis-tributed systems that are due to non-standard com-munication protocols and incompatible components orplatforms have largely been solved through standardiza-tion and commoditization of protocols and platforms.Distributed systems are being designed at higher levelsof sophistication these days, and having an expressiveyet usable speci�cation language is a valuable tool.IOA is a formal language for specifying the seman-tics of distributed systems. I5 is a speci�cation frame-work for architectural de�nition of distributed systems,also intended as a basis for con�guration management.I5 has �ve levels that specify mainly the structuralcharacteristics at di�erent levels of abstraction, but I5does not address the semantics or dynamics of dis-tributed systems interactions. We explore the integra-tion of IOA and I5 to create combined speci�cationsthat enjoy the bene�ts of both speci�cation languages:the �ve di�erent levels of abstraction of I5 with theirstructural speci�cation capabilities are enhanced by asemantic speci�cation written in IOA. We show an ex-ample of a speci�cation developed using IOA and I5 inan integrated way. We consider general approaches tosuch integrated speci�cations and discuss the possibili-ties and limitations of integrating IOA and I5, as wellas our future work towards the complete integration.Keywords: software engineering, software architec-ture, formal speci�cations, distributed systems, dis-tributed software engineering.

1. IntroductionDistributed systems are ubiquitous. Computers areconnected, and software components running on dif-ferent computers work together interacting to achievecommon goals. Low level technical problems like com-munication protocols have long been solved. New so-phisticated and powerful distributed systems are beingdeveloped, and new challenges include the need to de-sign systems at a higher level of abstraction.Software architecture has become important withinthe software engineering community. There hasbeen a big e�ort in developing architectural pat-terns [4] and several architectural de�nition languages(ADLs). Examples of these ADLs are Rapide [10], Ae-sop [6], MetaH [17], UniCon [15], Wright [1], C2 [13],SADL [14], and ACME [7]. All these languages pro-vide formality to architectural speci�cations, some-thing lacking from box and line diagrams that are stillcommon in professional practice. Distributed systemsare the most typical application for ADLs since theyare naturally thought of as a set of interacting com-ponents. ADLs are precise for specifying distributedsystems, but even the simplest systems require a veryverbose and detailed speci�cation.I5 is a framework for specifying the architecture ofdistributed systems. I5 can be considered an ADL. Itis fully formalized [3], and it also has many interestingfeatures: it has �ve integrated levels of abstraction,it includes software and hardware features, and it hasa graphical and textual notation. All these featuresmake I5 a powerful speci�cation framework, providing

www.manaraa.com

the designer with a graphical high level language anda textual detailed speci�cation language. I5 providesa high abstraction level speci�cation framework, butit does not have any means for specifying semantics ordynamics of the communication of distributed systems.Input/output automata is a formal language de-signed by Lynch and Tuttle [12] at MIT for specifyingthe semantics of distributed systems. IOA is a pre-cise language for describing Input/Output Automataand for stating their properties [8]. IOA models dis-tributed systems as a set of automata that have aninternal state and may execute input, output and in-ternal transitions. IOA has been successfully used forspecifying distributed algorithms [11].IOA is used to specify semantics of distributed sys-tems at a level of abstraction that does not include theability to specify system deployment. I5 is a frame-work for specifying the architecture of distributed sys-tems but includes no semantics. Our objective is toinvestigate the integration of the two languages andproduce a powerful speci�cation framework taking ad-vantage of the abstraction levels and structure of I5and the expressiveness for specifying distributed sys-tems' semantics and dynamics of IOA.In Section 2 we present an overview of I5 and IOAby developing a common example in both speci�cationlanguages. In Section 3 we show how the two speci-�cations can be integrated into a unique more power-ful speci�cation of the same example. We analyze thebene�ts of the integrated speci�cation. We draw someconclusions in Section 4 and discuss the possibility ofa complete integration.2. I5 and IOAWe introduce input/output automata and I5 by de-veloping an example. The GUESS-GENERATOR examplehas three types of interacting components, one thatchooses a number, another one that generates numbersand tries to guess the chosen number, and a third onethat counts the number of times the number generatorguesses the number. This simple example highlightssome structural and dynamics features that become ap-parent when speci�ed either with IOA or I5.2.1. The I5 FrameworkI5 is a �ve level speci�cation framework speciallyintended for architectural speci�cation of distributedsystems [3]. Each level addresses di�erent aspects ofthe speci�cation in a decreasing level of abstraction in-cluding both software and hardware features, and us-ing either graphical or textual notation. The graphical

notation is based on customized UML implementationdiagrams [5], and the textual notation is based on theZ speci�cation language [16].The levels of I5 are Interface, Implementation, In-tegration, Instantiation, and Installation, the �ve I s.In any level, the designer can switch between graphi-cal and textual notation, according to his preferences.However, we have found that graphical notation is bet-ter for the �rst three levels and textual notation is morepractical for the last two [2] because graphics repre-sent better high level abstractions, but text is morescaleable when more and more detail is added.Each level of speci�cation in I5 deals with di�erentconcepts and uses a di�erent notation, but they are allrelated. Figure 1 shows the �ve speci�cation levels in-cluded in a I5 with their software and hardware parts,and the dependencies among them. We describe eachlevel and show how the GUESS-GENERATOR example isrepresented.
COMPONENT

TYPES

COMPONENT
IMPLEMENTATION

CLASSES

FINAL
INSTALLATION

INSTALLATION
REQUIREMENTS
(fixed components)

NODE
IMPLEMENTATION

CLASSES

NODE
TYPES

COMPONENT
INSTANTIATION

NODE
INSTANTIATION

APPLICATION
INSTANTIATION

INSTALLATION
REQUIREMENTS

(together, separated)

IMPLEMENTATION
INTEGRATION

1 1

2 2

3 3

4

4

4

5 6

7

7

7

SOFTWARE HARDWARE

INSTANTIATION

INTERFACE

INSTALLATION

IMPLEMENTATION

INTEGRATION

Figure 1. The hardware and software levels of I5and their dependencies.Interface. This �rst level de�nes the component typesof the application, and the node and connectortypes of the target network. For every componenttype, the Interface speci�cation provides a name,

www.manaraa.com

a set of interfaces, and a set of calls to interfacesin other component types. Interface inheritanceis also speci�ed at this level: a subtype has thesame interfaces and calls as its supertypes and itextends them.In Figure 2, we show the graphical represen-tation of the software Interface level of I5 forthe example. There are three component types:GENERATOR, GUESS and WINNER. The GENERATORsends a number to GUESS, this one checks if itmatches its internal value, and if it does, it senda true message back to GENERATOR and noti�esWINNER that there is a winner. The calls and theinterfaces are shown in the diagram, but I5 hasno means to specify the dynamics of the executionjust described.
number

whoWINNER

GUESS

GENERATOR answer

Figure 2. I5 Software Interface Graphical Speci�ca-tion.Implementation. This level deals with the de�nitionof implementation classes. Each component, nodeor connector type in Interface may be realized byzero or more classes in the Implementation (re-alization is the relation between a class and thetype it implements). Implementation inheritanceis de�ned at this level: a subclass inherits the im-plementation of its superclasses; however, it is notmandatory that a class realizing a subtype be asubclass of the class realizing the supertype. Weuse UML component diagrams for the graphicalnotation; we use a stereotype for the componentclasses and we represent them as shaded boxes.The importance of the Implementation level ismore apparent when di�erent implementations are

whoWINNER_IC

numberGUESS_IC

(B)

SEQUENTIAL
answer answer

NON_DETERMINISTIC

Figure 3. I5 Software Implementation GraphicalSpeci�cation.provided for the same component type. In theGUESS-GENERATOR example, we have two di�erentclasses of GENERATOR, a NON-DETERMINISTIC anda SEQUENTIAL generator; these names describe theway the components choose the numbers to guess.The software Implementation diagram for the ex-ample is shown Figure 3. Notice that the exis-tence of di�erent implementations for GENERATORis clear, but their internal di�erence is suggestedonly by their names.Integration. This level de�nes the dependencies thatexist between component and node classes for de-ployment: a node class supports a componentclass, meaning that instances of a component classmay be deployed to instances of a node class.These dependencies correspond to hardware re-quirements of the component classes.Instantiation. In this level, the instance components,nodes and connectors that form part of the actualsystem are de�ned. Only instances of the classesde�ned in the Implementation level can be de�nedand they must follow the same communicationpatterns. Figure 4 shows the software Instanti-ation of the GUESS-GENERATOR example; there aretwo non-deterministic and three sequential gener-ators and one instance of GUESS and one instanceof WINNER.Instances are named with an underlined lower casename, a colon and the name of the class theyinstantiate, as is standard for naming instancesin UML diagrams (we do not instantiate types

www.manaraa.com

answer
r2:NON_DETERMINISTIC

answerr1:NON_DETERMINISTIC

numberg:GUESS_IC

s3:SEQUENTIAL

answer

s2:SEQUENTIAL

answer

answer

s1:SEQUENTIAL

whow:WINNER_ICFigure 4. I5 Software Instantiation Graphical Spec-i�cation.as is standard in UML, but classes). The inter-action occurs as follows: an instance generatorsends a number to the guess instance, this com-ponent compares the received number with its in-ternal value and if it is the same, it returns a trueanswer to the generator, and otherwise a false.Whenever there is a generator that guesses thenumber, the instance of WINNER is noti�ed andGUESS chooses another number. I5 does not pro-vide means for specifying this dynamics, and itcannot be shown in the diagram, but all of thepossible messages are shown as calls to some in-terface.Installation. This last level de�nes the completedeployment of instance components of the dis-tributed application to instance nodes in the targetnetwork. Every instance identi�ed in the Instanti-ation must be part of the Installation. Installationrequirements such as �xing the location of certaincomponents, or prescribing that two componentsmust be deployed to the same or di�erent nodes,are also de�ned at this level.For simplicity of presentation, we make no referencesto hardware or network elements in our example. Thuswe do not show the hardware parts of Interface, Imple-mentation, and Instantiation levels and we do not spec-ify the integration of software and hardware elementsin the Integration and Installation levels.

2.2. Input/Output AutomataIOA is a language for specifying, programmingand validating distributed systems [8] described as in-put/output automata. It has been applied to severalreal world applications with good success.An automaton A is speci�ed with a signature,sig(A), consisting of the declaration of its input,output and internal transitions; a set of internalstates, states(A); a set of start states, start(A);the de�nition of its transitions as state-transition re-lations, trans(A) (a subset of states(A) � sig(A)� states(A)); and an optional task partition.The signature is the declaration of all of the au-tomaton's transitions. There are input, output, andinternal transitions. The de�nition of the transitionsis given as a precondition and an e�ect; the precon-dition is a logic expression that enables the transitionwhen it is true (an empty precondition is assumed to bealways true). The internal state is de�ned by a set ofstate variables; the transitions usually modify the val-ues of these variables as part of their e�ects; the e�ectsis executed atomically to yield a post-state. The taskpartition is de�ned to assure fair executions, avoidingstarvation of some enabled transitions.In Figure 5 we show a GUESS automaton that re-ceives a number i from another automaton g, and re-turns true to g if the input value matches its internalvalue and false if it does not. Whenever there is a gthat guesses the value, GUESS also outputs the identi-�cation of the winner. We also include a speci�cationof the GUESS automaton using IOA in Figure 6.The signature of GUESS includes the input transi-tion number and the output transitions answer andwho shown in Figure 5, and it also de�nes an internaltransition choose one, not present in the �gure. Thestate is de�ned by the internal value to be guessed, theidenti�er of the sender of the number, and two
agsindicating when a number has been received, ready,and when the number has been guessed, respectively.Notice that value is initialized nondeterministically toa number between 0 and 10.The input transition number is always enabled (ithas an empty precondition), and whenever automatong sends a new number i, it is compared to the internalvalue. If it is equal, guessed is set to true enablingthe choose one and who transitions. Whenever a newnumber is received, the variable ready is set to trueand sender is assigned the identi�er of the automatonthat sent the number. The transition answer gets en-abled when a number is received (ready); it sends atrue or false value to sender, depending on the valueof guessed. The transition who informs about the gen-

www.manaraa.com

number (i)g

GUESS who (g)

ganswer (a)Figure 5. GUESS receives a number and says if it isthe internal value.erator that guessed the number, whenever this hap-pens (guessed). The internal transition choose onechooses non-deterministically a new number wheneverthe old one was guessed (guessed).This simple example shows the main features of thespeci�cation of a single input/output automaton. How-ever, more powerful speci�cations can be built com-posing di�erent communicating automata or specifyingfamilies of automata through parameterization.2.2.1 I/O Automata CompositionWe can compose automata matching input transitionsin one automaton with output transitions with thesame name in another automaton, and by combiningthe states of the composed automata. Whenever atransition in one of the automata in the compositionis executed, every transition in other automata in thesame composition that has the same name is also exe-cuted. The combination of an input transition and anoutput transition with the same name can be consid-ered an internal transition of the composition.In Figure 8, the automaton WINNER has only one in-put transition, who, that matches the output transitionin GUESS with the same name. Figure 8 also speci�esWINNER using IOA. The internal state of the automatonis de�ned by the array score indexed by Index andcontaining integer elements; this array is completely

automaton GUESS (Index : type)signatureinput number (i : Int, g : Index)output answer (a : Bool, g : Index),who (g : Index)internal choose one ()statesvalue : Int := choose i where 0 � i � 10,ready : Bool := false,sender : Index,guessed : Bool := falsetransitionsinputnumber(i,g)e� : if i = valuethen guessed := true� ;ready := true ^ sender := goutputanswer (a,g)pre : a := guessed ^ g := sender ^ readye� : ready := falsewho (g)pre : guessed = true ^ g = senderinternalchoose one ()pre : guessed = truee� : guessed := false;value := choose i where 0 � i � 10Figure 6. GUESS receives a number and says if it isthe internal value.initialized to zero. The e�ect of the who transition isto accumulate 1 to the score of the winning generator.2.2.2 Parameterized AutomataInput/output automata can be de�ned with param-eters, so a whole family of automata is actually de-�ned with the same speci�cation, one for each valueof the parameter. Figure 7 shows a generic automatonGENERATOR; there is actually one automaton for eachvalue of g.The GENERATOR automaton is parameterized by g,meaning that there is actually one automaton for eachvalue of g, but the set of g's is not speci�ed either.The semantics of the GENERATOR type is shown inFigure 9. Notice that the input transition answer andthe output transition number correspond to the inter-face and the call in the Interface speci�cation in I5.The IOA speci�cation also provides the semantics ofthe GENERATOR, that is, whenever an answer is received,the generator is ready to choose another number be-tween 0 and 10 and send it to GUESS.We specify two di�erent implementations for the

www.manaraa.com

number (i)g

WINNER

GUESSGENERATORg

ganswer (a)

who (g)Figure 7. The GENERATOR is a parameterized au-tomata.automaton WINNER (Index : type)signatureinput who (g : Index)statesscore : Array [Index , Int]so that 8 i : Index (score[i] = 0)transitionsinput who (g)e� : score [g] := score [g] + 1Figure 8. GUESS says who is the WINNER.GENERATOR in Figure 10, one that chooses the numbernon-deterministically and another one that chooses thenumber sequentially. In Figure 10, we provide the spec-i�cation of these two kinds of GENERATOR mentioned inSection 2.1. Notice that this di�erentiation of gener-ators is not present in Figure 7 because it shows onlythe interface interaction of the automata but not thesemantics of this interaction. The speci�cations of thetwo di�erent implementations of GENERATOR share theirname and signature, but they di�er in their internalimplementation. The parameter g in the signature isde�ned as const, meaning that the value of this pa-rameter is constant for every instance automaton.The family of GENERATOR automata have an outputtransition number that matches the input transitionwith the same name in GUESS, and an input transi-tion answer that matches the output transition withthe same name in GUESS. The answer transition hasan identical implementation in both generators, assign-ing a true value to newtry, meaning that an answerhas been received. The implementation of the outputtransition number is di�erent in both generators: in the

automaton GENERATOR (type Index, g : Index)signatureinput answer (a : Bool, const g)output number (i : Int, const g)statesnewtry : Bool := truetransitionsinput answer (a,g)e� : newtry := trueoutput number (i,g)pre : 1 � i � 10 ^ newtry = truee� : newtry := falseFigure 9. The GENERATOR type semantics.non-deterministic generator, the new number i is an in-teger number chosen non-deterministically between 0and 10, and in the sequential generator, i is the num-ber following the last one sent. In both cases, newtryis set to false, disabling the number transition so noother number is sent before a new answer is received.Figure 11 shows the complete speci�cation of theGUESS-GENERATOR example. The set of the generatoridenti�ers Index is de�ned as an enumerated type. No-tice that the set of identi�ers corresponds to the in-stance components de�ned in Section 2.1.Notice that the composition corresponds to a highlevel speci�cation and assumes that GENERATOR au-tomata are all identical and it does not consider thetwo implementations shown in Figure 10. We can as-sume we are using the type de�nition in Figure 9. Wecan also produce a similar composition at the imple-mentation level by including the two implementationsof GENERATOR. Using IOA methodology [12] it is pos-sible to formally prove that the implementation com-position correctly implements GUESS-GENERATOR withrespect to its external behavior.3. The Integrated Speci�cationIn this section, we examine the steps that are re-quired to build an integrated speci�cation. The inde-pendent speci�cations using I5 and IOA presented inSections 2.1 and 2.2, respectively, have elements thatare unique to each language, and most importantly forour purposes, have elements that match to each other.Thus, it is possible to build an integrated speci�ca-tion by using the strengths of both languages. Ourproposed integrated speci�cation contains the �ve ab-straction levels of I5, where each level is enhanced bythe speci�cation of the application's semantics usingIOA.

www.manaraa.com

automaton GENERATOR SQ (type Index, g : Index)signatureinput answer (a : Bool, const g)output number (i : Int, const g)statesvalue : Int,newtry: Bool := true,transitionsinput answer (a,g)e� : newtry := trueoutput number(i,g)pre : newtry;i := choose i where 1 � i � 10e� : newtry := falseautomaton GENERATOR ND (type Index, g : Index)signatureinput answer (a : Bool, const g)output number (i : Int, const g)statesvalue : Int := 1,newtry: Bool := true,last : Inttransitionsinput answer (a,g)e� : newtry := trueoutput number(i,g)pre : newtry = true;if last = 10 then i := 1else i := last + 1� ;e� : newtry := false;last := iFigure 10. Two implementations for GENERATOR:non-deterministic and sequential.3.1. Matching ElementsAutomata in IOA are de�ned by their name (withzero or more parameters), their signature, their statevariables, and the semantics of their transitions. InI5, component types are characterized by their names,their interfaces and calls; component classes of thesame type share their interface but may have di�er-ent implementations; component instances are identi-cal implementations with a di�erentiating name. Ta-ble 1 details the matching elements in IOA and I5, thiscorrespondence is critical to understand the construc-tion process of an integrated speci�cation.The correspondence shown in Table 1 establishesassociations between the di�erent modeling elementsthat are present in IOA and I5. These associationsare critical to allow a software engineer or distributedsystem designer to utilize the two di�erent speci�ca-

automaton GUESS-GENERATORtype Index = enumeration of nd1, nd2, sq1, sq2, sq3composeGUESS (type Index);WINNER (type Index);GENERATOR (type Index, g) for g : IndexFigure 11. Complete IOA Speci�cation.IOA element I5 elementAutomaton's name and signature Component typeInput transition declaration InterfaceOutput transition declaration CallInternal transition declaration -Parameterized automaton Component type/classNot parameterized automaton Component instanceState variables -Transitions' semantics -- Hardware elementsTable 1. Correspondence of I/O Automata and I5de�nition elements.tion languages in a complementary process in supportof de�ning a distributed application.No hardware elements of a distributed system arede�ned as part of input/output automata. So only thesoftware part of the Interface, Implementation, and In-stantiation levels of I5 can expect to share informationwith IOA speci�cations.3.2. I5 + IOAIn this section, we explain the way that the di�er-ent elements in select levels of I5 match up with mod-eling elements in IOA. However, there is one impor-tant caveat for the discussion. Recall that unlike I5,there are no harware platforms or elements of a dis-tributed system which can be explicitly de�ned as partof input/output automata. Thus, for the purposes ofthis paper, we concentrate on the software speci�cationlevels of I5 (Interface, Implementation, and Instantia-tion).3.2.1 InterfaceGenerically, a type is de�ned by a combination of itsinterface and its semantics. In I5, the speci�cationof a type is only given by its interface (the interfacesand the calls) with the semantics only suggested by thetype's name. Clearly, this semantics is imprecise, andopen for misinterpretation. In the de�nition of an IOAautomaton, a name is provided, and input and output

www.manaraa.com

transitions are declared as part of its signature. If weconsider the component types in the diagram in Fig-ure 2, and the semantic speci�cation of the automatain Figures 5, 8 and 9, we can see the coincidence oftypes and automata names, interfaces with input tran-sitions, and calls with output transitions. Thus, wecan combine the software Interface diagram of I5 andthe corresponding speci�cation of each automaton cor-responding to its type to obtain an integrated softwareInterface speci�cation. As a result, we begin to aug-ment I5's Interface with semantics supplied by IOA'sautomata.3.2.2 ImplementationIn the Implementation level of I5, we must spec-ify the di�erent implementation classes that realizeeach type identi�ed in the Interface level. In Fig-ure 10, we provide two di�erent IOA implementa-tions for GENERATOR: GENERATOR ND and GENERATOR SQ.These automata share the same input and output tran-sitions with the type speci�cation of GENERATOR. More-over, it can be shown that these two implementationsfor the GENERATOR automaton type are forward simu-lations [8] of the GENERATOR type speci�ed in Figure 9,meaning that every trace of the implementations is alsoa trace of the type. For example, there cannot be twoconsecutive number transitions without a answer tran-sition in between, and the numbers sent are alwaysintegers between 1 and 10. Using this interpretation,these implementations correspond to classes in I5 ter-minology.In the cases of the GUESS and WINNER automata, weprovided a single implementation for each one, so theneed for a distinct level of abstraction between I5 com-ponent type and class speci�cation of these automatais not evident.Combining the concepts of I5 and IOA in this caseyields an integrated speci�cation of the software Im-plementation level of I5, shown in the diagram in Fig-ure 3, and enhanced with the IOA speci�cations in Fig-ures 5, 8 and 10.3.2.3 InstantiationIn the Instantiation level of I5, the actual instancecomponents of the application are identi�ed. The se-mantics of these instances is identical to the semanticsof the classes they belong to, and they are distinguishedwith a di�erent identifying name. As a result, the IOAspeci�cation of the complete system given in Figure 11is equivalent to the combination of the Instantiation inFigure 4 and the integrated Implementation speci�ca-tion described in Section 3.2.2.

The progression that combines I5's Interface, Imple-mentation, and Instantiation with IOA automata fromFigures 5, 8, 9, 10, and 11, yields an integrated speci�-cation where the abstraction capabilities of I5 can beaugmented and complemented with the semantic capa-bilities of IOA.4. ConclusionsThe speci�cation, design, and construction of a dis-tributed application is a di�cult task, complicated bythe absence of a single model, language, or methodol-ogy that can be employed throughout all steps of theprocess.In this paper, our proposed integration of I5 andIOA represents an important �rst step in supportingthis di�cult process, where the strengths of one speci-�cation language can o�set the weakness of the other.We have shown that IOA provides the semantics anddynamics I5 lacks, while I5 provides abstractions thatdi�erentiate between types and classes, which is not asclearly supported in IOA.We have also shown that I5 software Interface com-ponent types and Implementation classes can be aug-mented with semantics through the speci�cation of cor-responding automata using IOA. Forward simulation inIOA can be used to formalize the realization relationbetween I5's types and classes. To accomplish this, wemust prove that a class actually implements the seman-tics speci�ed for the type it realizes: the class and thetype must have the same input and output transitions,and every trace of the class must also be a trace of thetype. Once this forward simulation is proven, the soft-ware engineer can reason using the simpler type speci-�cation rather than the more speci�c implementation.The work presented in this paper is an important steptowards a combined speci�cation language that spansmultiple steps of the distributed application design anddevelopment process.Our ongoing e�orts continue to focus on a completeintegration of IOA and I5. I5 provides an abstrac-tion of hardware elements that is very important forthe speci�cation of distributed systems, especially forde�ning deployment. Consider, for example, the re-quirement that the GUESS and GENERATOR componentsmust be deployed together, but the WINNER is a remoteprinter. This kind of requirements can be speci�ed us-ing the Integration and/or Installation levels of I5, andas a result the integrated speci�cation is more expres-sive. However, there are no obvious analogs of thisactivity within IOA; rather, we must understand howthis process in I5 can in
uence and complement IOA.We are also pursuing the speci�cation of the se-

www.manaraa.com

mantics of interface. There is still no way to spec-ify the meaning of the inheritance in I5 without usingthe component types/classes semantics. Inheritance inIOA has been analyzed in [9], and interface extensionseems to map nicely to I5's interface inheritance, aswell as specialization describes implementation inher-itance, but additional work is needed to fully under-stand the correspondence and its implications.References[1] Robert Allen and David Garlan. A Formal Basis forArchitectural Connection. ACM Transactions on Soft-ware Engineering and Methodoly, 6(3):213{249, July1997.[2] M. Cecilia Bastarrica, Scott Craig, Steven A. Demur-jian, and Alex A. Shvartsman. Structural Speci�cationof a Distributed System Using �. In Proc. of the 5 In-ternational Conference on Computer Science and In-formatics, IC2000, Atlantic City, NJ, February 2000.[3] M. Cecilia Bastarrica, Steven A. Demurjian, andAlex A. Shvartsman. I5: A Framework for Archi-tectural Speci�cation of Distributed Object Systems.In Proceedings of the 3rd International ConferenceOn Principles Of DIstributed Systems, OPODIS'99,Hanoi, Vietnam, October 1999.[4] Frank Buschman, Regine Meunier, Hans Rohnert, andPeter Sommerlad. Pattern Oriented Software Architec-ture: A System of Patterns. John Wiley & Son Ltd.,August 1996.[5] Hans-Erik Eriksson and Magnus Penker. UML Toolkit.Johen Wiley and Sons, Inc., �rst edition, 1998.[6] D. Garlan, R. Allen, and J. Ockerbloom. Exploit-ing Style in Architectural Design Environments. InProceedings of SIGSOFT'94: Foundations of SoftwareEngineering, pages 175{188, New Orleans, Louisiana,USA, December 1994.[7] D. Garlan, R. Monroe, and D. Wile. ACME: An Archi-tectural Interconnection Language. Technical ReportCMU-CS-95-219, Carnegie Mellon University, Novem-ber 1995.[8] Stephen J. Garland, Nancy A. Lynch, and MandanaVaziri. IOA: A Language for Specifying, Programming,and Validating Distributed Systems. Technical ReportUser and Reference Manual, MIT Laboratory for Com-puter Science, Cambridge, MA, December 1997.[9] Idit Keidar, Roger Khazan, Nancy Lynch, and AlexShvartsman. An Inheritance-Based Technique forBuilding Simulation Proofs Incrementally. In Proceed-ings of the 22nd. International Conference on Soft-ware Engineering, ICSE'2000 (to appear), Limerick,Ireland, 2000.[10] D. C. Luckham and J. Vera. An Event-Based Archi-tecture De�nition Language. IEEE Transactions onSoftware Engineering, pages 717{734, September 1995.

[11] Nancy Lynch. Distributed Algorithms. Morgan Kauf-mann Publishers, 1996.[12] Nancy Lynch and Mark Tuttle. An Introduction toInput/Output Automata. CWI Quart, 2(3):219{246,1989.[13] N. Medvidovic, R. N. Taylor, and Jr. E. J. Whitehead.Formal Modeling of Software Architectures at MultipleLevels of Abstraction. In Proceedings of the CaliforniaSoftware Symposium 1996, pages 28{40, April 1996.[14] M. Moriconi, X. Qian, and R. A. Riemenschneider.Correct Architecture Re�nement. IEEE Transactionson Software Engineering, pages 356{372, April 1995.[15] Mary Shaw, Robert DeLine, Daniel V. Klein,Theodore L. Ross, David M. Young, and Gregory Ze-lesni. Abstractions for software architecture and toolsto support them. IEEE Transactions on Software En-gineering, 21(4):314{335, April 1995.[16] J. M. Spivey. Understanding Z. Cambridge Tracts inTheoretical Computer Science 3. Cambridge Univer-sity Press, 1995.[17] S. Vestal. Metah Programmer's Manual, version 1.09.Technical report, Honeywell Technology Center, April1996.

